

MEASUREMENT CYCLES FOR MACHINE TOOLS

MARPOSS

Measurements and quality/process control on machine tools is becoming increasingly important to modern manufacturing companies. With this in mind, Marposs has developed new software packages for its contact and contactless probing systems. Mida software provides an easy way to effectively utilize your Mida part inspection probes, tool setting probes and laser systems, in a wide range of applications to boost your production quality and efficiency.

Measurement cycles are available for the following applications:

Accessories Tool & Process Toolsetting Arms Software Monitoring

Touch Probes

Transmission Systems

Laser

PROBING SOFTWARE

The development of in-machine measurement involves increasingly accurate gauging of part position, dimensions and form of the finished piece, as well as the settings and checks carried out on tools used in the process.

The response to these requirements is a new range of software packages aimed at the machine tool market, for use in conjunction with our probes, on machining centres, milling machines, lathes and turning centres.

The part check cycles include a series of macros such as bore, boss, surface, corner, shoulder, pocket and stock measurements. The tool check cycles enable the user to inspect the tool length, radius and axial integrity.

Lasel

Software

Software for machining centres and milling machines

In order to satisfy the requirements of all machining centre and milling machine users, the part check probing software packages are available at three different levels:

- routine Inspection Basic designed to carry out basic alignment and measurement operations on simple geometrical elements
- routine Inspection Premium that includes flexible angular and vector cycles
- routine *Inspection Ultimate* designed to simplify complex measurements that would otherwise involve laborious calculations, such as orientating the probe in accordance with the three working planes

The below table lists features available at each level.

PART CHECK CYCLES

		LEVELS		
Ref.	Measurement and calibration cycles	Inspection Basic	Inspection Premium	Inspection Ultimate
	Protected probe positioning			
1	Calibration cycle			
2	Bore and boss measurements			
3	Web and pocket measurements			
4	Single surface measurement			
5	Angle measurement on X/Y planes			
6	Angle measurement with respect to the X/Z and Y/Z planes	—		
7	Angled bore and boss measurements	_		
8	Angled web and pocket measurements	_		
9	Angled single surface measurement	_		
10	Corner positioning	_		
11	Corner position with co-ordinates rotation angle	_	_	
12	2 bores/bosses measurement	_	_	
13	3/4 bores/bosses measurement	_	_	
14	Stock measurement	_	_	
15	Aligning the probe for multiple-axis*	_	_	
	Cycle call-up example	_	_	

(*) = available only for Fanuc types CNCs or similar

/NN

MARPOS

MARPOSS

3/4 bores/bosses measurement (13)

This cycle is used to determine the centre position of 3/4 bores/bosses in X and Y, and can be used to set it as the part origin, it also calculates the radius of the circumference described by the bores/bosses. It is possible to create and print a report.

Alarm messages may be generated if the position or the dimensions are out of tolerance.

Stock measurement (14)

This cycle is used to calculate the maximum, minimum and average stock values on a surface along the measurement axis, and can set the minimum value as the part origin on the X-Y-Z axes. It is possible to create and print a report.

Alarm messages may be generated if the position or the dimensions are out of tolerance.

Z Y

Touch Probes

Transmission Systems

aser

Software

Toolsetting Arms

Tool & Process Monitoring

Accessories

(13)

(14)

(15)

(16)

(17)

(18)

Ζ

Aligning the probe for multiple-axis (15)

This cycle enables the system to measure adjacent geometrical elements (planes, bores and bosses) lying on the G17, G18 and G19 work planes with the probe aligned on these planes.

TOOL CHECK CYCLES

Probe calibration cycle (15)

This cycle calibrates the probe with respect to a sample, determining the offset values with respect to the axes in use.

Tool length and radius measurement/check (16)

This cycle measures the tool axial and non-axial length and radius. It can be used to determine the dimensions of an unknown tool or check those of a previously measured one, and update the tool-table with the true value. It can carry out static measurements or on tools that are rotating.

Axial tool integrity check (17)

This cycle carries out a rapid tool length check along the spindle axis, even in the presence of coolant, and updates the tool table. It can carry out static measurements or on tools that are rotating.

Lathe software

PART CHECK CYCLES

Protected positioning cycle

This cycle is used to position the probe prior to calling up the measurement cycle. The movement may be performed on the X or Z axis, or both axes simultaneously. All movements are protected. In the event of a collision an alarm is generated.

X axis calibration cycle (18)

This cycle calibrates the probe with respect to a sample along the X axis. This calibration may be either single (touching a single point on the circumference) or double (touching two diametrically opposite points). The calibration can carried out on either an internal or an external diameter.

Ζ

(20)

Z axis calibration cycle (19)

This cycle calibrates the probe with respect to a sample along the Z axis. This calibration may be either single or double, touching the sides of a shaft or a rib.

This cycle measures one side of the part along the X axis by carrying out a single touch; it can be used to offset the X dimension in the tool table. A tolerance check may be included.

Z axis single touch measurement cycle (21)

This cycle measures one side of the part along the Z axis by carrying out a single touch; it can be used to offset the Z dimension in the tool table.

Touch Probes

Transmission Systems

Lasei

Tool measurement (25) This cycle is used to determine the X and/or Z tool offsets.

Accessories

(26)

LASER SOFTWARE

To satisfy the growing demand to "measure tools in the machine" using laser devices, Marposs has developed a complete library of tool measurement software packages for the Mida Laser systems.

Mida Laser enables the user to measure the tool whilst mounted in the machine spindle and rotating at normal working speeds.

The tool check cycles can perform the following:

- Tool identification
- Tool breakage check
- Tool length and radius measurements
- Boring bar length and radius measurements
- Automatic tool table updating
- Cutting profile integrity check
- · Measuring and updating the cutting radius and identifying a worn sector
- Machine axes thermal drift compensation

Tools can be measured several times during the machining cycle in order to check for wear at regular intervals. Tool condition is checked against tolerance values defined by the operator.

All measurements are carried out while the tool is rotating.

Common cycles for machining centres, milling machines and turning centres

Ref.	Measurement and calibration cycles	Milling machines Machining centres	Turning centres
1	Mida Laser calibration cycle		
2	Concentric and non-concentric tool length and radius measurements		•
3	Checking the integrity of single tool cutting edges at a point or on a straight profile		
4	Checking the integrity of single tool cutting edges on a complex profile		•
5	Checking the tool circular sector		
6	Checking the tool for axial breakage		
7	Pre-setting disk mills	•	
8	Compensation for axes thermal drift		
9	Boring bar length and radius measurements	•	
10	"Passing" axial tool breakage check		
11	Pre-setting standard turning tools	_	•
12	Pre-setting neutral turning or threading tools	_	
13	Pre-setting turning tools for shafts	_	

Lasei

Touch Probes

Transmission Systems

Mida Laser calibration (1)

This cycle is used to determine the exact position of the laser beam in machine co-ordinates, using a sample whose dimensions are known; the L and R values are inserted in the tool table, while the H value is inserted in the configuration program.

The calibration cycle performs the four touches required to obtain the position and the dimensions of the laser beam and writes the results to variables that will be used to measure the tools.

Axial and non-axial tool length and radius measurements (2) This cycle measures the tool axial and non axial length and radius. It can be used to determine the dimensions of an unknown tool or check those of a previously measured one, and update the tool-table with the true value.

Checking the integrity of single tool cutting edges at a point or on a straight profile (3)

This cycle checks that each individual tool cutting edge is intact and undamaged either at a single point or along a straight profile while the tool is rotating.

Alarm messages may be generated if the cutting edges are out of tolerance.

Checking the integrity of single tool cutting edges on a complex

The same as cycle #3, but the operator may program an additional circular movement, and tilt the straight scanning

Checking the tool circular sector (5)

profile (4)

profile.

This cycle checks the form of the tool in order to determine the error with respect to the theoretical form by measuring the radius of the tool cutting edges at various points.

Alarm messages may be generated if the cutting edges are out of tolerance. In addition, the cycle can also indicate the worn sector on the arc of the cutting edge circumference.

Transmission Systems

Touch Probes

Laser

Software

3

4

(5)

Toolsetting Arms

Tool & Process Monitoring

Accessories

Checking the tool for axial breakage (6)

This cycle carries out a rapid tool length check along the spindle axis, even in the presence of coolant. Alarm messages may be generated if the length is out of tolerance.

(6)

9)

(10)

Pre-setting disk mills (7)

This cycle measures the length, radius and thickness of a disk mill.

Alarm messages may be generated if the measurement is out of tolerance.

Axes thermal drift compensation (8) This cycle determines the thermal drift along the machine axes, and the displacement with respect to the laser beam.

Boring bar measurement (9)

This cycle measures the length and radius of boring bar by scanning a pre-defined area.

"Passing" axial tool breakage check (10)

This cycle carries out a rapid tool length check by passing through the laser beam, even in the presence of coolant. Alarm messages may be generated if the length is out of tolerance.

Lasei

Transmission Systems

Touch Probes

/////

MARPOSS

Dedicated turning centre cycles

Accessories Tool & Process Toolsetting Arms Monitoring

Mida probing software part numbers

	Machine tool	Application	Numerical Control	Levels	Part N°.	Memory (kB)²
	Machining centres and milling machines	Part check	Fanuc and similar ¹	Inspection Basic	C092*1200C	35,3
5				Inspection Premium	C092*1200B	57,3
				Inspection Ultimate	C092*1200A	80,2
h Prohe			Siemens 840DI-840D-810D	Inspection Premium	C092*2200B	31,0
				Inspection Ultimate	C092*2200A	42,0
6			Siemens 802D	Inspection Premium	C092*3200B	14,0
-			Siemens 840C	Inspection Basic	C092*4200C	10,2
			Mazatrol	Inspection Ultimate	C092*7200A	80,1
Tra		Tool check	Fanuc and similar ¹		C092*1100A	22,1
Inci			Siemens 840DI-840D-810D		C092*2100A	13,3
nice		Part check	Fanuc and similar ¹		C092*1500A	14,5
ion			Haas		C092*E500A	15,3
			Siemens 840DI-840D-810D		C092*2500A	18,6
			Siemens 802D		C092*3500A	18,9
	Lathes and turning centres		Siemens 840C		C092*4500A	2,0
laser			Mazatrol		C092*7500A	14,5
		Tool check	Fanuc and similar ¹		C092*1400A	7,9
			Haas		C092*E400A	7,5
			Siemens 840DI-840D-810D		C092*2400A	7,7
-			Siemens 802D		C092*3400A	7,7

Mida laser software part numbers

Systems

Software

Toolsetting Arms

Tool & Process Monitoring

Accessories

Machine tool	Application	Numerical Control	Part N°.	Memory (kB)
	Tool check	Fanuc and similar ¹	C092*1300A	82,2
		Siemens 840DI-840D-810D	C092*2300A	115,0
		Heidenhain iTNC 530	C092*6300A	174,0
		Heidenhain iTNC 426-430	C092*5300A	148,0
Machining centres and		Fagor 8070	C092*9300A	123,0
milling machines		Fagor 8050-8055	C092*8300A	28,7
		Selca 3000-4000	C092*A300A	110,0
		D.Electron Z32	C092*B300A	146,0
		ECS WIN Series	C092*C300A	12,6
		Mazatrol	C092*7300A	81,9
		Fanuc and similar ¹	C092*1600A	117,0
Turning centres		Siemens 840DI-840D-810D	C092*2600A	56,5
		Mazatrol	C092*7600A	117,0

N.B.: * represents a letter used to indicate the operator manual language, as follows: I (Italian), G (English), F (French), E (Spanish) (1) = Brother, Haas, Makino, Mitsubishi, Yasnac

(2) = 1 kB of memory corresponds to approximately 2.5 metres of tape

For a full list of address locations, please consult the Marposs official website

D6C05500G0 - Edition 05/2009 - Specifications are subject to modifications © Copyright 2009 MARPOSS S.p.A. (Italy) - All rights reserved.

MARPOSS, ^(G) and Marposs product names/signs mentioned or shown herein are registered trademarks or trademarks of Marposs in the United States and other countries. The rights, if any, of third parties on trademarks or registered trademarks mentioned in the present publication are acknowledged to the respective owners.

MARPOSS www.marposs.com Marposs has an integrated system to manage the Company quality, the environment and safety, attested by ISO 9001, ISO 14001 and OHSAS 18001 certifications. Marposs has further been qualified EAQF 94 and has obtained the Q1-Award.

